Module 3: Linear Harmonic Oscillator-I

3.1 Let $\psi_n x$ represents the normalized eigenfunctions corresponding to the linear harmonic oscillator problem n = 0, 1, 2, 3... . $\psi_0 x = N \exp\left(-\frac{1}{2}\xi^2\right); \xi = \gamma x$ and $\gamma = \sqrt{\frac{\mu\omega}{\hbar}}$. Determine the normalization constant N.

(a)
$$N = \sqrt{\frac{\gamma}{\pi}}$$

(b) $N = \sqrt{\frac{\gamma}{2}}$
(c) $N = \sqrt{\frac{\gamma}{2\pi}}$
(d) $N = \sqrt{\frac{\gamma}{\sqrt{\pi}}}$

[Answer (d)]

3.2 Let $\psi_n x$ represents the normalized eigenfunctions corresponding to the linear harmonic oscillator problem n = 0, 1, 2, 3.... Let $\Psi x, 0 = \frac{1}{\sqrt{3}}\psi_0 x + \frac{1}{2}\psi_5 x + i\sqrt{\frac{5}{15}}\psi_9 x$ represents the wavefunction at t = 0. If we make a measurement of energy, then the probability of finding the value $\frac{11}{2}\hbar\omega$ will be

(a) 0
(b)
$$\frac{1}{4}$$

(c) $\frac{1}{3}$
(d) $\frac{1}{2}$

[Answer (b)]

3.3 Let $\psi_n x$ represents the normalized eigenfunctions corresponding to the linear harmonic oscillator problem n = 0, 1, 2, 3.... Let $\Psi x, 0 = \frac{1}{\sqrt{3}}\psi_0 x + \frac{1}{2}\psi_5 x + i\sqrt{\frac{5}{15}}\psi_9 x$ represents the wavefunction at t = 0. If we make a measurement of energy, then the probability of finding the value $\frac{7}{2}\hbar\omega$ will be

(a) 0 (b) $\frac{1}{4}$ (c) $\frac{1}{3}$ (d) $\frac{1}{2}$

[Answer (a)]